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Abstract—A rational approach to the correlation of boundary layer mass transport rates, applicable to
many commonly encountered laminar flow conditions with thermal diffusion and/or variable properties,
is outlined. The correlation scheme builds upon already available constant property blowing/suction
solutions by introducing appropriate correction factors to account for the additional (“pseudo” blowing
and source) effects identified with variable properties and thermal diffusion. Applications of the scheme to
the particular laminar boundary layer mass transfer problems considered herein (alkali and transition
metal compound vapor transport) indicates satisfactory accuracy up to effective blowing factors
equivalent to about one third of the “blow off value. As a useful by-product of the variable property
correlation, we extend the heat-mass transfer analogy, for a wide range of Lewis numbers, to include
variable property effects.

NOMENCLATURE

blowing parameters defined by equations
(1.2), (3.2}, (3.12), (3.13);

modifying factor, in the mass-heat transfer
analogy, equation (3.6);

correlating factor for thermal diffusion,
equation (3.12);

correlating factor for variable properties.
equation (3.1);

ratio of wall mass transfer rates

mass flux of species i [gem ™25 !];
exponent appearing in heat transfer
correlation, equation (3.5);

Lewis number (=pDc,/4);

molecular weight of mixture;

molecular weight of species i;

mass transfer rate at the wall [gem ?s™'];
temperature exponent of diffusion
coefficient ;

Peclet number based on the species
boundary layer thickness

0y,
(Pe,, =—|;
D

heat flux per unit area;
Reynolds number based on x

o U X0
(i.e., Re, = (p—)C—L )),
llj,‘ /s

*Supported by NASA Grant NSG-3107, AFOSR Con-
tract F-49620-76-C-0020 and the University of Kansas.

+Postdoctoral Research Aerothermochemist; formerly,
Assistant Professor of Aerospace Engineering, University of
Kansas; currently, Aerospace Research Engineer, Aero-
Chem Research Laboratories, Inc., P.O. Box 12, Princeton,
New Jersey, U.S.A.

+Professor of Chemical Engineering and Applied Science,

Director,

HTCRE Laboratory, Yale University, New

Haven, CT, US.A.

Se,
v,
Uy,

Y,

Schmidt number (= (u/p)/D);
suction velocity ; equation (2.11a);
blowing velocity;

mass fraction of species “i".

Greek symbols

X,
ay,

thermal diffusion factor (dimensionless);
temperature exponent of specific heat ;

f,.0,. exponents defined by equations (Al.11,

84404.0,

Al.12);

thickness of the velocity,

temperature and species boundary layers,
respectively ;

e, exponent of Lewis number (see equation
(3.3));

€1, temperature exponent of thermal
conductivity ;

, temperature exponent of viscosity.

Subscripts

w, gas—solid interface (i.e., “wall”);

e, outer edge of thermal boundary layer;

h, pertaining to heat transfer;

m, pertaining to mass transfer or species
boundary layer edge;

1, trace species ;

2, “carrier” species (air in present examples):

cp, constant property case
(i.e., incompressible);

vp,  variable property effects included ;

eff, effective quantity;

o reference quantity (identified here as an
average across the species boundary layer);

BL, a quantity computed numerically from the
solution of the full boundary layer
equations;

td+uvp, in the presence of thermal diffusion
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and variable property effects;



td. in the presence of thermal diffusion effects.
without variable properties;

tdo,  overall quantity referring to the combined
source and suction cffects of thermal
diffusion.
Superscript

(7)., quantity averaged over the thickness of the
species boundary layer.

1. INTRODUCTION

THE HEAT and mass transfer literature includes
several alternative algebraic correlations for estimat-
ing variable property corrections to laminar boun-
dary layer transfer rates for a wide range of
geometries and boundary conditions. While the
utility of such algebraic correlations to replace
tedious ab initio numerical computations is obvious,
especially for engineering design purposes, little has
been done to develop a general framework for
correlating a variety of specific effects, such as those
introduced by thermal diffusion and variable proper-
ties. In this paper, which treats an important class of
laminar boundary layer problems, we show how this
can be accomplished by exploiting analogies to
already-known problems with “blowing” and/or
homogencous reaction. Although attention will be
focused here on the prediction of mass transfer rates,
our general approach should apply equally well for
correlating momentum and energy transfer rates.

The physical problems which motivated this work
pertain to salt deposition/corrosion of marine or
aircraft gas turbine blades [ 1]. coal fired boiler tubes
[2], and the chemical deposition of metallic coatings
from vapor phase compounds (CVD) [3]. These
applications involve the low-speed boundary layer
flow of a multi-component gas mixture over a
surface of specified geometry. Often, this gas mixture
consists of components of disparate molecular
weights, comprising, in the simplest cases, a (pseudo-}
binary mixture. Frequently the species containing
the elements to be transferred are present in only
trace amounts (e.g., 4 few parts per million). Thus, in
the marine gas turbine application, it is of interest to
determine the mass deposition rtate of corrosive
alkali sulfate impurities present as “trace species™ in
the boundary layer flow of hot combustion product
gases over the turbine blades. Alternatively, to
deliberately chemically coat a surface with a heavy
metal [3] a flow of the corresponding heavy metal
halide vapor in a hydrogen and/or inert carrier gas is
frequently passed over the heated surface. Deposition
of the metal by heterogeneous dissociation/reduction
of the halide vapor can then occur ria a convective
diffusion transport mechanism near the hot surface.
To embrace the above-mentioned situations we
therefore consider forced convection mass transfer
rates from a low-speed. laminar boundary layer over
a solid wall in the presence of pressure gradients,
non-uniform fluid properties and vapor transport via
thermal (Soret) diffusion [4 -6].
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In the absence of the above-mentioned coupling
effects. “constant property™ (¢p) solutions to the
laminar boundary layer cquations ware relatively
simple to obtain for the flow situations outlined
above (e.g. sce Ref [7]). Of course, “variable
property” effects associated with the inherent tem-
perature dependencies of the gas density. specilic heat
capacity and the relevant transport coeflicients,
increase the non-linearity and coupling in the system
of equations governing the conservation of mass.
momentum, and energy. This. in turn. considerably
increases the complexity and computational cost of
the numerical solution
summarize the results
expenditure) several correlations have already been
devised. These are broadly classified here as those
applicable to boundary layer Nows with interfacial
mass transfer (i.c., “blowing” or “suction™) and those
for a “sohd wall”. In the former category. repre-
sentative correlations are due to Knuth [§]. (based
on the idea of a reference state). and Gross ¢t af. [9].
The latter correlations suggest that in the absence of
diffusion-conduction-interaction effects (analogous to
the thermal diffusion treated below), the dimension-
less momentum and energy transfer rates (normal-
ized with respect to the corresponding laminar or
turbulent “solid wall” condition) can be satisfactorily
predicted using a function linear in a suitably delined
dimensionless “blowing parameter™. e.g. [10. 11]:

procedure. In order to

of such calculations {or

e .

» > 1--CB. (1.1)
(qw ) no blowing

where *B’, the nondimensional “blowing parameter”

is defined as

g Pl
/’v“v(‘Slh ) no blowing

(1.2)

and the multiplying factor *C" is nearly constant at
least in the constant property, incompressible case.
Also, as pointed out in [10], while the above
correlation can also be motivated by film (Couette
flow) theory, for constant property laminar boun-
dary layers one can derive such a linear relation
only when the extent of blowing (B > () or suction
(B < 0) is sufficiently small.

For the “solid wall” cases. on the other hand.
variable property effects have been accounted for
using cither the well-known reference temperature
scheme [12] or property-ratio correction factors
[13]. In contrast, the underlying basis for the
correlation approach presented in this paper is the
observation that variable property effects, even for
the “solid wall” case, induce blowing or suction-like
behavior into the boundary layer. Thus, by suitably
defining a nondimensional grouping (in the spirit of
the “blowing parameter” suggested by Gross ef al.
[9]), it becomes possible to develop a useful
correlation scheme which not only accounts for
variable property effects, but also accounts for the
mass transport effects of thermal (Soret) diffusion. As
will be seen, thermal diffusion also introduces uan
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additional effect, equivalent to a linear pseudo-
“source” or “sink” in the species conservation
equation. Fortunately, this additional effect is readily
included using a simple explicit correction factor,
motivated by film theory.t

Actually, considerable attention has already been
given to both thermal diffusion and diffusion thermo
effects, in connection with the transpiration cooling
of hypersonic entry vehicles [ 14-16]. Although most
of this effort was focused on determining the effects
of these thermodynamic couplings on the wall mass,
momentum, and energy transfer rates, evidently no
simple basis for correlating the results of these
numerical computations was reported.

2. GOVERNING EQUATIONS
AND IMPLICATIONS

For the laminar, binary boundary layer situations
described in the previous section, the appropriate
differential equations expressing conservation of
overall mass, momentum, energy and the trace
species of interest are well-known, and may be
written in their two-dimensional form:

Overall mass:

é ¢
— (pu) +——(pr) = 0; (2.1
ax cy
Momentum:
ou N u dp . ¢ cu 22)
)u4 —+—u=—1; 2
! PPar™ Tax M )
Energy:1
ch n ah, ¢ ( “) (7 3}
U—+pr—= —— ; 2.
pu— p ay 2y q
Species 1:
orn ) oy _ "
t ==+ pv 5'y__4( ) (2.4)

where ¢ and j; are the transverse (y-component)
energy and mass fluxes, respectively.

When diffusion-conduction interactions are pre-
sent, the expressions for the energy and mass fluxes
across the boundary layer can be written [6, 16]:

eT M?

- yRr
"= 45, Ry

aff + (hy —hy)ji (2.5)

+Although the reciprocal (“diffusion thermo™) effect
(contribution of concentration gradients to the heat flux)
can be neglected for the particular boundary layer situ-
ation treated in this paper, its influence on the heat transfer
rate could also be correlated in a fashion similar to that
adopted below.

+The dependent variable for energy is taken to be the
stagnation enthalpy h,, given by h+ (u?/2). Note that in the
present sitzuations the mass-averaged specific heat of the

mixture, Y. Yic,, is approximately equal to c,,, since Y;
« 1, for tlheltrace species. The advantage of this form of the
energy equation (2.3) is that the compression work term,
u(dp/dx), does not explicitly appear. The viscous dissi-
pation term, however, has been neglected in equation (2.3)
since only low Mach number flows will be considered here.
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,i=12

i = —pD[aY $2HCZ ) ‘33] (26)

ay T 0y

In equation (2.5), the first term represents the
Fourier heat conduction while the second is due to
the diffusion-thermo (or Dufour [17]) effect, men-
tioned earlier. The mass flux of each species in the
binary mixture, as given by equation (2.6), includes
the concentration gradient contribution (i.e., Fick
diffusion) and another due to the temperature
gradient (ie., thermal (Soret [18]) diffusion). Al-
though diffusion and conduction phenomena are
generally closely coupled, it is seen from equations
(2.5) and (2.6) that when one of the species is present
only in trace amounts (i.e., when Y, « 1), the second
and third terms in equation (2.5) can be neglected so
that Fourier conduetion remains the dominant
mechanism for energy transfer. Therefore, in the
cases being considered herein, the simplified ex-
pressions for the energy and mass fluxes take the
form:

eT

- g 2.7)
cy

(Y, (In T
Jji= ——pD[C ! chl( n }
y

ey

(2.8)

Substituting equations (2.7) and (2.8) into (2.3) and
(2.4), respectively, one can re-express the energy and
species conservation equations as:

Energy:
oh, ch, ¢ |4 dh)
P ox v ﬁv T oy %cp ay} 29)
Species:
@Y le
pu

aY, éInT
= . (210
(ﬁ} %pD[ o + oY, PR ]} ( )

By carrying out the indicated differentiations on
the right hand side of equation (2.10), one can
rearrange the species equation to make it resemble
the familiar “constant property + homogeneous re-
action” form:

ay, Y, 8%y, s
P“T;“"P(U—Us)afyl:PD 5y21+r1 s (211)

where we have introduced the definitions:

:
Uszz[s@_upm@ﬂ (.11a)
el oy ay

o o InT
Flietr = {a (PDOC 3y )} Y.

The above form of the species equation reveals that
the variable property effect associated with the (pD)
product produces a suction-like effect on the species
transport, whereas thermal diffusion contributes
both a suction-like term as well as a source-like term.

and

(2.11b)
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The combined effect of both these phenomena on the
species mass transport is described by equation
(2.11) in terms of the overall pseudo-suction velocity
v, and the pseudo-source strength per unit volume.
741~ In connection with the latter, it is interesting to
note that the effect of thermal diffusion is similar to
that of a distributed, homogeneous. first-order chem-
ical reaction occurring within the boundary layer.
with an effective specific rate constant given by¥
L RN
k=10 (oo ] )}4
o 1é

(2.12)

. ay

One observes from equations (2.11a) and (2.11b) that
the above-mentioned effects can easily be reversed
depending upon the sign of the thermal diffusion
factor, «. and the temperature gradient, OT/dy.
Consider. for instance. a trace species that is heavier
than the carrier gas. In such cases x is usually
positive. Now. il ¢(T:(y was also positive, as for a
“cold wall™, one can conclude from equation (2.11a)
that a “suction™ (not “blowing™} effect would prevail
within the species boundary layer. tending to
increase the mass transfer rate to the wall. On the
other hand, the influence of 7', is slightly more
complicated. The product of density and diffusivity,
for a gas, can be taken to increase with temperature
according to the proportionality pD ~ T" "' (where.
typically, n > 1, being exactly 3/2 for “hard-sphere”
molecules. from kinetic theory considerations [4]).
Also, the thermal diffuston factor may be treated as a
constant (for simplicity) in this argument. even
though in reality (see below) it is weakly temperature
dependent [5]. Using these facts, onc can im-
mediately express the pseudo-source term by the
proportionality:

("‘T 2 ) (WJT’
e ~ [('1~2,)7"' 3(7) +1" J (2.13)
LY [0

Now, because the temperature exponent of the
diffusivity, n, is generally less than 2, the first term in
the above proportionality will always be negative.
Also, since #*T/éy? is negative across the boundary
layer over a “cold wall”, one concludes that thermal
diffusion would actually set up a first-order homo-
genecous “sink™ (not “source”) for the depletion of the
trace species concentration. This leads to a reduction
in the mass transfer rate to the wall. In contrast, the
case of a “hot wall” (ie, when (T/éy <O and
CPT/0v? > 0), would be expected to cause a first-
order homogeneous “source” to prevail, increasing
wall mass transfer rates. when x> . Clearly, the
above trends would be reversed when x < 0, as for

+Inferences drawn from recent composition probing of
CVD boundary layers [T. O. Sedgwick, Paper No. 231,
152nd Electrochemical Society Meeting, Atlanta, Ga.,
October 9- 14 (1977)] should be corrected for this effect
since some of the changes currently attributed to the
“chemistry”™ will in fact be due to non-Fick ({thermal)
diffusion.

R. Srivastava and D. E. ROSNIR

Table 1. Effects of variable properties and thermal diffusion

“Cold wall” “Hot wall™
[ Fllen [N M
>0 Suction Sink Blowing Source
Suction Suction
x <0 or Source or Sink
blowing blowing

trace species lighter than the carrier gas. Table |
summarizes these effects of variable properties and
thermal diffusion.t It is to be noted that while the
influence of #{"., on mass transfer rates is analyti-
cally predictable, as shown above, the question of
whether ¢, would be strong enough to result in a net
suction or blowing within the boundary layer cannot
be as simply answered. Since the problem being
considered involves no real suction or blowing at the
wall (i.e., the momentum equation is subject to the
usual “no-slip condition™ in the present “solid wall”
case), the forced convective velocity field is fully
determined by the coupled momentum and cnergy
equations alone (lLe., equations (2.2) and (2.9)). The
one-way coupling between these equations and the
species equation (ie.. equation (2.11)) then dictates
the magnitudes of the imposed velocity components
u and ¢ supplied to the species equation. Thus, a
competition is set up between these and v, It will be
seen in the next section that the predicted influence
of v, 1s often deminated by the imposed forced
convection field. itself influenced by variable pro-
perty effects (which are usually important whenever
thermal (Soret) diffusion is important).

3. A NEW CORRELATION SCHEME
Our general approach focuses attention on the
actual mass transfer rate normalized with respect to
the rate in the absence of the effect. Thus, variable
properties (vp) and thermal diffusion (t¢d) are treated
as effects superimposed upon the known “constant
property” {cp) solutions, leading to a generalized

composite correlation, as described below.

3.1 Correlation of variable property effeces  In the
absence of thermal diffusion, since even variable
property effects produce pseudo-suction or blowing
within the boundary layer, we seek a correlation in
terms of a linear relationship similar in spirit to
those successful for cases with “real”™ wall mass

+In many previous studies of thermal diffusion effects on
boundary layer transfer rates (e.g., see [ 15]), in the presence
of foreign gas injection at the wall, it was reported that the
adiabatic  wall temperature was shifted owing to
diffusion--conduction interactions alone. Although such
shifts in the adiabatic wall temperature can be physically
related to the presence of a “source™ or “sink™ within the
boundary layer, these mechanisms do not appear to have
been clearly identified or exploited.
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transfer. Thus we write:

.

m
("),

wheret By ,, is the equivalent of the “blowing
parameter” mentioned earlier and C, ,, is a quantity
which will be determined so as to provide an
acceptable accuracy in predicting the required mass
transfer ratio, F,,. Based on a line of reasoning given
in Appendix 1 we propose the form:

N Bl ~20)
i ()
0,

_(,,-1)(0L1()l)’ (3.2)
6*

are fluid property value

=1-C,,,B G.1)

eft,vp s

where ¢x 04, B,, n
exponents, and

0, =0,+3(1-0,)Le,,)
8, =T,/T,

(3.3)
(3.4)

and the multiplier C,,, will, for the present, be
determined using already available heat transfer
correlations in the manner described below. (This
results in the implicit inclusion of pressure gradient
effects into the present correlation scheme.) The
coefficient C, ,, appearing in equation (3.1) will be
treated here as the basic “correlating factor”, to be
determined ultimately by using independently com-
puted exact numerical solutions to the coupled
boundary layer equations for F,, (Appendix 2).

In the literature, numerical solutions to the
coupled systems of boundary layer momentum and
energy equations (i.e., equations (2.2) and (2.3)), with
pressure gradient and variable properties, are avail-
able [19]. Simple correlations of these for the wall
skin friction and heat transfer rates have also been
suggested [ 13]. Reference [ 13], for instance, provides
the following heat transfer correlation in the case of
the boundary layer flow of air over a “solid wall”:

LI LL Ty (35)

@y (Nuy),
where the exponent ‘k’ has been given under both
“hot” and “cold” wall conditions, for the flat plate
and plane stagnation point cases (see also Table 2).
Typical values of ‘k* (being 0.07 for a “cold” wall and
0.1 for a “hot” wall) confirm our earlier comment
(Section 2) regarding the blowing or suction effect of
variable properties being dominated by the actual
prevailing transverse convection field. In view of the
availability of such heat transfer rate correlations,
and future applications, it is desirable to relate the
variable property mass transfer correlation being

+This ratio of the actual mass transfer rate (with variable
property effects) to that without, is exactly equal to the
corresponding Stanton or Nusselt (Sherwood) number

ratio, i.e.,
W’ St,, Nu

)y Sty Nupy,’

m
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Table 2. Values of the exponent ‘k” appearing in the heat
transfer correlation (i.e., equation (3.7)) [13]

Geometry “Hot” wall “Cold” wall
0, >1) 0, <1
Flat plate -0.01 0
Plane stagnation point 0.1 0.07

sought here to the heat transfer correlation of
equation (3.5).

In the absence of thermal (Soret) diffusion, since
the species Lewis number governs the relative
importance of mass and heat diffusion, we anticipate

m’ q"
ey = th(ew’ Lee) T B
(m”).p (d")ep
Combining equations (3.1), (3.5)* and (3.6) we have:
Ft'p =1- Cl.vacH'.z'p = th(ewv Le()()[:‘ (37)

(3.6)

Noting that Le,, = Le, (which need not be unity
even when Le,= 1) and imposing the following
obvious requirements on C,,,:

Conlfy = 1, Le,) = |
th(ews Le* = l) =,

(3.8a)
(3.8b)

one can now derive useful algebraic interrelations of
the form:

CZ.L‘p = (Al +A2C1.l'p)//A3
Con = (A4+A5Cl,xfp)/0‘:v

(3.9)
(3.10)

where the coefficients A4,, A4,, A5, A,, A5 are explicit
functions of the parameters 0., Le, and fluid
property exponents (cf. Appendix 1). These relations
complete one realization of the present correlation
scheme, except for the as yet undetermined “correlat-
ing factor” C,,, which multiplies the effective
blowing parameter in equation (3.1). The de-
termination of C, ,, for a range of 6, and Le, values
was achieved in the present analysis by considering
various trace species in air flowing over both “cold”
@, < 1) and “hot” (6, > 1) walls. For each case, a
value of F, (=F,, say) was computed via a
numerical solution procedure (cf. Appendix 2) for the
governing differential equations. Then, these Fy,
values were used to obtain C; (0. Le,) in tabular
form via the following relation (obtained by combin-
ing equations (3.7) and (3.10)).

Crep= [Fu.—Agl/As. (3.11)

To facilitate interpolations (for other values of 0,
and Le,), and perhaps, extrapolations, a simple “best
fit” curve is finally suggested. This is discussed in
detail in Section 4.

3.2. Correlation of thermal diffusion effects
As seen in Section 2, thermal diffusion introduces
both a suction (or blowing) type term, as well as a

tAlternatively, a variable property energy transfer cor-
relation based on the pseudo-blowing notion, could be used
here.



1286

linear pseudo-source (or sink) effect into the species
boundary layer conservation equation, thereby
modifying the mass transfer rate which would prevail
in the presence of variable property effects alone. In
the present correlation scheme, these effects are first
treated separately via two independent correction
factors which are later combined to yield an overall
correlation. In doing this it is visualized that thermal
diffusion effects further perturb the already available
(see Section 3.1) variable property rates.

To correlate the “suction”-like behavior associated
with thermal (Soret) diffusion we proceed in a
manner analogous to that already described for
variable property effects. Accordingly, this correction
is postulated to be of the form:

Fy=1 ﬁCnchl‘l,uh {3.12)

and, based on physical considerations detailed in
Appendix 3, we proposet

a, (0, —1)(Le,)

w

Byrw=— " ,
eff.td 24—(()‘:"1)([‘(’*)

(o2,
Tl I
Uy oc,[ + 0,

and starred quantities are evaluated at the tempera-
ture T,0, (equations (3.3), (A1.9), (A1.10)).

The value of the thermal diffusion factor, including
its temperature dependence, is evaluated from kinetic
theory considerations presented in references [ 5] and
(6], and is curve-fit by the 2-parameter relation:

(3.13)

where

i

(3.14)

_ -1 o1/ )
a=o,+o_ (T " =a, ]+ T , (3.15)

where o, and «_, are constants pertinent to the
species under consideration. o, is obtained from
equation (3.15) by evaluating 2 at the temperature
T, Typical estimated values of o, and «_,/u, for
mixtures of a number of trace species in air, are given
in Table 3. Figure | shows the corresponding
variation of o with temperature for these species.
Predictions were based on the assumed
Lennard—-Jones 12:6 potential parameters included
in Table 3.

The specification of the effective blowing para-
meter B, as an explicit function of 0, Le and «
(equations (3.13) and (3.14)) completes the for-
mulation of the thermal diffusion correction factor
F 4 provided the corresponding sensitivity coefficient
C,; is determined so as to yield an acceptable
accuracy in the prediction of the mass transfer rate.
However, before C,, can be determined one has to
establish an additional correction factor to account
for the “source” effect associated with thermal
diffusion. This correction is sought here in the form

+Note that in the simultaneous absence of variable
property eflects and thermal diffusion (ie., 6, = 1), By
= 0 and one recovers the expected result F,; = |. Also, in
this limit. 0 = 1, as required.

R. SrivasTava and D. E. ROSNER

Table 3. Trace species/airt estimated values of 2, and
—(x_yja,) (ef. equation (3.15)) and corresponding trace
species Lennard--Jones 12:6 interaction parameters

Spectes %, —(x_ya,) I3 ok
Na,SO, 0.7889 481.29 5.00 2221.0
NaCl 0.3534 449.27 4.186 1989.0
NaOH 0.1670 43492 3.804 1962.0
Na —0.05697 436.76 3.567 1375.0
NbCl, 0.8342 237.24 5.148 6127
MoCl; 09162 24222 5.542 638.4
WCl, 0.9565 24273 5.540 647.8
Hel, 10056 24940 5.625 (95.6
Ul 1.2665 341.12 6.239 1217.7

tFor air, o= 3711A, ¢k = 786K, transition metal
pentachloride potential parameters estimated from thermo-
chemical data compiled in Gerasimov et al, NASA TT
F-285.

i
NaCl
L
° NaOH
10'+
L e Na
P (sign change)
////
- /
Ve
|62 1 J
500 1000 1500 2000

Temperature T, K

Fi1G. 1. Variation of the thermal diffusion factor x with
temperature, for various trace species-air mixtures.

of an explicit expression for the ratio:

FA = ril”r/(’h”)nn source (}16)

which plays the role of a chemical “reaction factor™.
Since the suction correction has already been
proposed (i.e., F4), it only remains to find the extent
by which “source”™ or “sink” effects might further
alter the wall mass transfer rates. Figure 2 illustrates
qualitatively the effect of a volumetric “source™ or
“sink” on the trace species mass fraction profile
across the boundary layer. Of course, these eflects
will in general be competing with the previously
mentioned “suction” or “blowing” effect in any given
flow situation.

In view of these requirements, it is expedient to
again exploit the Couette-type analogy. mentioned in
Appendix 1, to provide the following simplified
species equation:

2

-—d7y,
pD —— + 1 =0,

317
dy? G
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FIG. 2. Schematic of the “source” or “sink” effect of thermal
diffusion on the boundary layer mass fraction profiles.

(applicable also to diffusion across a chemically
reacting stagnant film). The source 7] would

correspond to a first-order rate law of the form:

¥ =KpY,, (3.18)

where the “specific rate constant”, K, is given by
equation (2.12). Using the above rate law, the
analytical solutions to equation (3.17) are of the
form:

“Source” (K > 0)

Y, = Asin By + Bcos fy (3.19)
“Sink” (K < 0)
Y, = A’sinh fy+ B’ cosh By, (3.20)
where
B = (KI/D)'"2. (3.21)

Note the sinusoidal nature of the “source” solution
profiles and the exponential nature of the “sink”
solution profiles (cf. the qualitative trends depicted in
Fig. 2). Subject to the boundary conditions Y;(0)
=Y, and Y,(j,) =Y, one may determine the
arbitrary constants 4, B or A’, B’ appearing in
equations (3.19) or (3.20). Using these one may then
establish the required mass transfer rates (since m”
~ Y{(0)) both in the presence and absence of the
“source” or “sink”. In this way one obtains the
following expressions for the required correction
factor, F, depending on whether a “source” or “sink”
prevails:

“Source”

F,= Bém[

Y., — Y, cos(Bs,) J . (3.22)

(M, — Y, )sin(84,)

“Sink”
Yl _Yl COSh(ﬂém)

F.=# | ———r— =" | 3.23

s=F '"[(Ylm—Y,w)sinh(ﬁém)} (3-23)

To evaluate 86, = (|K|/D)!/?5,, in the above ex-
pressions it is necessary to consider the average value
of K (equation (2.12)) over the species boundary
layer thickness, expressed in terms of pertinent
variables. Using the estimation procedures given in
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Appendix 3 we propose:
a8 2 (1-6,) (@_ o
Bbm - { 2 }‘ él_ 1 2 6"] 2 (Hm gw)
&)
-2 — 2y1,2
L )[MHOM—OW)] } . (324)

26, <5,,< 1
i)

with the following supplementary relations:

0, = 0,4+ (1—0,)(Le,) (3.25)
oy 1
1~ . 326
O (Ley) (3.26)

The latter originate from relations given earlier (see
equations (3.3) and (A1.8)).

The source correction factor F, is now completely
determined by equations (3.22), (3.23) and the
expressions in equations (3.24)—(3.26) for a given 6,
Le and « Note that F, does not contain any
unknown “correlating factors”, as F,, and F,, did.

3.3. The Composite correlations

Having independently established the correction
factors for the suction and source type behavior of
thermal diffusion alone, one can combine them to
yield the following useful “overall” multiplicative
correlation for thermal diffusion effects:

.~ 7t

m

Ftdo = = F!dFs (327)

o

(marzo vp
= (1-CyB ) F, (3.27a)

The determination of the sensitivity coefficient C,;
(0., Le, a) is carried out in the same manner as that
outlined earlier for C, .

Finally, in order to correlate the simultaneous
effects of both variable properties and thermal
diffusion, the following multiplicative “composite”
correlation scheme is proposed:

m "), (")
= = : = F,F, (328
)y (), (A7), T (3.28)

=(1- Cl,uchff .l*p). (1- CtdBcff,rd) ‘F

(3.29)

o
In the next section all necessary constants are
determined via comparisons with exact numerical
solutions to the laminar boundary layer equations.

4. RESULTS AND DISCUSSION

To complete the correlation outlined above it is
necessary to determine the “correlating factors”,
C, ., and C,, appearing in the variable property (vp)
and thermal diffusion (td) correlations, respectively.
The former is a function of the wall temperature
ratio,t #,, and the trace species Lewis number Le,

+While ¢, = T,/T, is a convenient variable for discussing
variable property and Soret effects, the specific energy
variable 6, = h/h,, is more convenient in numerically
integrating the exact BL energy equation (see Appendix 2).
Since we take ¢, ~ 7™ (Appendix 1) it is readily seen that
T,/T, = (h, /h, )" *2V for stagnation point flow.
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Tuable 4. Values of constants in equations (4.1) and {(4.2) for the “cold”™ wall and

“hot™ wall cases

Species 2 D, Eq E, {}, ~range
Na:1SO 11864 0.5309 ~{).2889 1.4980 03 <, <
G 08124 1.2304 0.1507 0.8679 06 <0, <
e 13890 1.3436 00272 13130 03s0. <
e 1.2290 13820 0.214¢9 0.9787 06 <0, <
20181 15018 04997 13052 03<4,. <
NaOH 19333 16648 03439 10422 06<0. <
Na 4.2716 2.2615 0.4943 1.7954 03<y, <
e 4,1345 26593 0.4739 18178 0.6 <0, <
NbCly 07436 08469 —0.1525 0806  10<0, <
MoCl, 06477 08233 —0.1469 01786 10 <0, < 45
WCl, 06374 08205 0148 01812 10 <0, <45
Hel, 06078 08141 —0.1498 00818 10<0, <45
ul, 04601 07878 —0.1882 01830 10<0, <45

while the latter also depends upon the relevant
thermal diffusion factor a, mainly vig the product
af{Le) (071 — 1), For specified values of these para-
meters, C, ., and C,; can be uniquely determined
from the relationships given carlier. That is.

8
= e = =y B, = ol (31
r (?i?”)¢[7 trpette 8 (
m"”
Fgo = 0 - ={1-C By )F. 327a)
{#i} },_‘ o

where the coefficients, blowing parameters and F are
available from the algebraic expressions given in
Section 3. The wall mass transfer rate ratios (ie., F,,
and F,,) were first computed via a complete
numerical solution of the system of governing
boundary layer differential equations (see Appendix
2 for an outline of the numerical techniques) and
representative “eigenvalues” for Na,SO,-transport.
These solutions were obtained for a variety of trace
species in air {(covering the molecular weight ex-
tremes Na(23) to UIL{745.6) over a wide range of ()~
values spanning “cold” to “hot™ wall conditions).
Using these “exact” results for F_, and F,,, treferred
to hereafter as F,, ) in equations (3.1) and (3.27a) the
“correlating factors™ were then determined in tabular
formas Cy,, = C 0, Le,)and Cul0,. Le,o ).

For the simplest correlation, one could hope that
the pseudo-blowing parameters By, By could
be defined in such a wayv that the associated
correlating factors C, ., and C,, would be insensitive
to Le and wall temperature ratio. over the entire
parameter range of interest. However, the magnitude
of these ranges necessitated the incorporation of
“residual” Le and 0, dependences into the factors C,
according to the simple (two term polynomial)
forms:

{4.1)
(4.2}

[Cl .r’p(()\\'j,]l.u = constant D(l + D] (')\r
[Crd (Ou‘ )] Loy s constant EO + EI Uw'

The values of the resulting constants {Dg, Dy, Eg, Ey)
are given in Table 4 for the various species and wall-
temperature ratios considered in this study. Note

that the coefficients appearing in equations (4.1) and
(4.2) are specific to a given binary mixture.

It is remarkable that such simple linear fits are
satisfactory for describing all the solutions repre-
sented in Table 4. Of course, under conditions such
that the source term F, becomes significantly greater
than unity, it is possible that such simple fits would
have to be generalized (e.g. using higher order
polynomials). ¥

Having established the required “correlating fac-
tors”, to use the correlation scheme presented in this
paper one goes through the following steps:

S1: For the particular problem being con-
sidered establish "k" from Table 2, or otherwise.
Also, evaluate f#, and f, from equations (AL.11)
and (A1.12) using known properties of the gas.

82: Compute the “correlating factor™ C'; , from
equation (4.1}, using Table 4 and the required 0,-
value.

S3: Using the values of 0, and Le,, specified for
the problem, compute the variable property
correlation ratio F,, from equation (3.7) and the
supplementary relations (i.e., equations (3.10) and
(ALIS)I-{AL.21)0

S4: The thermal diffusion correlation, which
consists of a “blowing™ part £, and a “source”
part F, can also be simply computed. F, is
determined from equation (3.12), using equation
(4.2) and Table 4 to supply the required value of
Ci

S5: To establish the source correction factor F,
it is necessary to evaluate the quantities x, and

+A numerical experiment aimed at testing this hypothesis
was conducted by considering “imaginary” trace species
with x values an order of magnitude higher than those
shown in Fig. 1, for the “hot” wall temperatures. The resuits
revealed values of F, as high as ten and it was found
unjustifiable to continue assuming that the suction and
source effects of thermal diffusion are separable, as done in
this study. Alternatives more in keeping with the philo-
sophy of the present correlation are presently being
investigated for these extreme “hot” wall cases (near the
blowoff limit discussed later) and will be reported
elsewhere.
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Le, first. 2, is found from equation (3.15) (using
Table 3), Le, from equation (A1.10). These
quantities correspond to the reference temperature
0,, already found in Step 3. Next, from Table 1,
establish whether a source or sink prevails and use
the above information to evaluate F from equa-
tions (3.22) or (3.23). The supplementary relations
for the various quantities involved in the ex-
pression for F, are provided by equations
(3.24)-(3.26).

S6: Knowing F,, F, and F, the “overall”
correlation ratio for thermal diffusion alone (ie.,
F,;,) and the “composite” ratio for the combined
effects of variable properties and thermal diffusion
{i.e, F) are obtained from equations (3.27} and
(3.29), respectively.

K}

A useful byproduct of the variable property
correlation scheme, as formulated in Section 3.1, is
the extension of the mass-heat transfer analogy to
wall temperature ratios significantly different from
unity. As is well known, in the absence of variable
properties and diffusion—conduction interactions, if
Le =1 then the nondimensional heat and mass
transfer coefficients across the boundary layer are
equal, provided the respective boundary conditions
are similar. The restrictions of constant properties,
and unit Lewis number are now relaxed in the
analogy given by equation (3.6); that is, C,, is a
calculable function of both ¢, and Le, (cf. equation
(3.10), following the procedure of Steps 2 and 3
above). Figure 3 shows the resulting variation of C,,,
for the various 6, and Le, values considered in this
study. One notes that when 0, < 1, m” is a smaller
fraction of 1, than the corresponding heat transfer
ratio. Thus, variable property effects influence mass
transfer predictions somewhat more strongly than
heat transfer predictions.

To illustrate the success of the present mass
transfer correlation scheme we consider here relative
errors in the “composite” transfer ratio F = m"/m;,
accounting, respectively, for variable properties and
thermal (Soret) diffusion. Figure 4 shows the de-
viations in 1 — F from the corresponding numerically
computed boundary layer solution, 1 —Fy;, for the
transport of metal halide containing vapor species to
a “hot” wall {1.0 < 8, < 4.5). It can be seen from this
figure that the values of 1—F predicted via the
present correlation scheme are accurate to better
than + 10%, Interestingly enough, the corresponding
individual correlations for F,, and F,, (= FF,) are
even more successful. Similar accuracy was achieved
in the “cold” wall cases also (not shown for the sake
of brevity). The correlation scheme predicted mass
transfer rates which were accurate to within two
decimal places.

As pointed out in Section 1, the species explicitly
considered in this study were selected based on their
relevance to gas turbine and chemical vapor de-
position applications. Accordingly, we considered
various sodium salt—air mixtures for the “cold” wall
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FiG. 4. Comparison of the composite correlation. F, vs the

corresponding boundary layer solution, Fy; (including

variable properties and thermal diffusion). for the “hot”
wall case {log-log plot).

cases, and several heavy metal halide-air (or N,)
mixtures for the “hot” wall cases. Because of
molecular weight and size differences we encounter a
rather wide variation of the transport coefficients for
mass diffusion (i.e, D and «). Consequently, the
sodium salt-air mixtures cover a wide range of
Lewis numbers (about 0.3 to 0.9) with most of the
heavy metal halide-air mixtures having Le values
near 0.3. However, these heavy metal halides are
characterized by much larger x-values than those of
the sodium salt-air mixtures (see also Fig. 1). As a
result, it is interesting that the actual Ul,(g)
transport rate to a “hot” wall in H, {with 0, =4)
can be reduced to about S0%, of that expected from a
variable property analysis neglecting thermal (Soret)
transport away from the wall.t These results suggest

+1nterestingly enough, variable property effects partially
offset those due to Soret transport, with the result that the
simultaneous neglect of both thermal diffusion and variable
properties incurs an error of “only™ 18", Thus, “improved”
calculations which include only one effect {eg. variable
properties) will lead to intolerably great errors (ca. 50°,
cited above}.
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cases.

that the entire area of CVD transport [3] should be
reexamined in the light of appreciable thermal
(Soret) diffusion [20, 21] as well as the more familiar
variable property effects.

Figure 5 shows the wall temperature dependence
of the source effect of thermal diffusion (F, defined by
equation (3.16)). Interestingly enough, while the
effect of the “sink” (for « > 0) is negligibly small for
the cold wall cases, in the “hot” wall case the effect of
the “source” can be very significant. This trend can
be anticipated from the expression for the effective
homogeneous rate constant K (equation A3.9),
which predicts large values when both the thermal
diffusion factors and temperature gradients (ie., x
and 6, values) are large. The “source” and “sink”
effects anticipated due to thermal diffusion were
confirmed by the detailed numerical solution of the
relevant boundary layer equations. Figure 6 shows
typical mass fraction profiles computed for both
“cold” (0, = 0.7, Na,SO,(g)-transport) and “hot”
(0,, = 4, WCl,(g) transport) walls.

In view of the possibility of large “blowing” effects
associated with either thermal diffusion and/or

5
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at wey
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Le, =0.3922 \
= a,=0.5036 )
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FiG. 6. Numerically computed mass fraction profiles for
typical “hot™ and “cold” wall cases.
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variable properties, it is instructive to consider the
possible limit of the species boundary layer “blow-
off”. By the term “blowoff” we mean the condition
of zero wall mass transfer rate (despite the presence
of a non-vanishing concentration driving force). The
present correlation scheme allows one to estimate
this “blowoff”” condition, explicitly, based on each of
the “blowing” influences associated with thermal
diffusion and/or variable properties. Thus by for-
mally equating F,, and F,, to zero equations (3.1)
and (3.12) lead to the following boundary layer
“blowoff™ limits,

(Bcli.hu)Vp = (Cl,rp’h !
(Betrpoha = (Cra) "

So long as B < (B,.) “blowoff” does not occur
and the present correlation scheme is presumed
valid. Under the conditions of the present study it
was found that blowoff due to either variable
properties or thermal diffusion did not occur in any
of the cold or hot wall cases considered in this paper.
As mentioned earlier, such blowoff limits provide an
upper bound for the validity of correlation schemes
like the present one.*

(4.3)
(4.4)

5. CONCLUSIONS

Algebraic relations are proposed to economically
summarize the results of a large number of numerical
solutions of the coupled laminar boundary layer
equations, complicated by the phenomena of thermal
(Soret) diffusion and/or variable properties. Specifi-
cally, for forced convection laminar boundary layer
flow:

(a) In the absence of thermal (Soret) diffusion, the
pseudo-"suction” or “blowing” effects of variable
properties were identified and successfully correlated
with the numerically computed wall mass transport
rate.

(b) Using this variable property correlation the
heat-mass transfer analogy has also been extended to
include the effects of variable properties for a wide
range of Lewis numbers and wall temperature ratios.

{c) By separately accounting for the pseudo-
suction and source behavior associated with thermal
(Soret) diffusion, a successful correlation of thermal
diffusion effects on mass transport rates has been
developed.

While this scheme has been applied to the
correlation/prediction of mass transport rates here, a
similar approach could evidently be used for cor-
relation energy and momentum transfer rates. The
general procedure we have outlined may be visual-
ized as rationally accounting for special pheno-
mena (e.g. thermal diffusion and variable properties)

+Calculations based on hypothetical a-values one order
of magnitude greater than the present ones yielded mass
transfer ratios, F,,, as small as 1073, corresponding to the
approximate blowofl limit. Note that these remarks do not
necessarily imply blowoff with respect to the velocity
boundary layer, a condition conventionally discussed.
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in terms of appropriate “blowing” and/or source-like
effects which make their appearance in the governing
conservation equations. These identifiable effects are
then superimposed upon the corresponding ‘“con-
stant property”-solid wall boundary layer, for which
solutions are readily available in both forced and free
convection situations. A similar strategy might be
used in the future to correlate the systematic effects
of other intervening boundary layer phenomena
(viscous dissipation, simple chemical reactions,
diffusion-thermo effects, etc.), at least for simple
boundary conditions [22].

In retrospect it might be thought that since
correlations are certainly not unique, alternate and
perhaps simpler-to-use previously proposed “curve
fits” (with no particular basis in the underlying
conservation equations) would be equally successful
and more “practical”. However, it is likely that
schemes such as that exploited above, motivated by
the presence of identifiable new terms in the more
general (boundary layer) conservation equations,
will be more efficient, and safer to extrapolate, than
their more arbitrary counterparts. While the details
of implementation will differ from case to case and
investigator to investigator, we believe that as a
correlation strategy the present approach has con-
siderable potential.

Acknowledgements—It is a pleasure to thank B. K. Chen for
the use of his thermal diffusion factor («;) estimates for
alkali and transition metal compounds (cf. Table 3 and
Fig. 1).
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APPENDIX 1. FORM OF THE VARIABLE
PROPERTY EFFECTIVE BLOWING PARAMETER

The following considerations suggest a useful functional
form for the effective blowing parameter associated with
variable properties (vp). Once this functional form is
specified, a “library” of specific exact computer solutions
can then be used to specify the undetermined coefficients
appearing in the “pseudo-blowing™ correlation.

In order to satisfy the obvious physical requirement that
F,, = m,/(m"},, should be unity in the absence of variable
property eflects, it is necessary to define B, as:

CerOm Oir0
Bty = [( - ”) —( ‘”‘vﬂ) ] (ALI)
D rp D p.
where
(Berthop = Cop— (0,)y (A12)
(Verr)ep = Uepr (A1.3)

In the above equations note that & is the y-component of
velocity averaged over the thickness of the transferred
species boundary layer, while (¢,),, is the averaged suction
velocity produced by variable properties alone (ie,
(1/p)(8(pD)/dy), as seen from equation (2.1ta)). The
motivation for the choice of the grouping ©,,/D, which is a
Peclet number based on the species boundary layer
thickness (5,,), comes from approximating the full species
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equation (i.e., equation
type equation:

(2.11)) by the following Couette-

;, 4h Dd " (A14)
Wp = p .
Plg dr f 4 |
The solution of this equation on the domain 0 < y < J,,
can be obtained directly in terms of the governing Peclet
group, izd,,/D. This type of a Couette flow analogy has
been widely used for analytically approximating certain
boundary Jayer characteristics (e.g., [8] and [13]).
From equations (Al.1), (A1.2) and (A1.3) we observe that

Boisy = AlPe,) - (I‘O"‘) (ALS)
D /.,

where

A(Pe,) = (00,,/D),,~ (i4,/D), . (A1.6)
and
p = D) (ALT7)
p Oy

This “shift” in the Peclet group (i.e., A(Pe,)) accounts for

the possible “offsetting” of the suction effect of variable
properties (mentioned in Section 2) produced by changes in
the real normal fluid velocity.

To proceed, we express A(Pe;) and (i,0,,/D),, in terms of
more convenient quantities, noting that the terms sub-
scripted “¢p’ may be evaluated at ‘¢’, the thermal boundary
layer edge. For convenience only, the variable property (or
‘vp” subscripted) terms in the effective blowing parameter
will be evaluated using a “reference temperature™t (T),
taken to be the arithmetic average temperature within the
species boundary layer, ie, T, = (T,+T,)/2. Now, by
dpproximdting the temperature at the species boundary
layer edge, T, using the relation?

L ALS)
o T-T, 7 '

the dimensionless reference temperature is given by equa-
tion (3.3) where #=T/T, Also, since the following
dimensional argument is valid under typical boundary
layer assumptions: ¢ ~ ud,/X ~ u,0,/x ~ u,d,,/x and J,/x
~ (Re, )" 12(S¢)” " we see that id,,/D ~ (S¢)'~ %

Next, we assume for simplicity that the temperature
dependencies of the density, specific heat and transport
coefficients can be adequately represented by the simple
power-law relations:§ p/p, = 07 ¢,/c, 0 = 0% u/p, = 0°:
A =0";D/D, = 0"

On this basis the Schmidt and Lewis number ratios
(needed below) can be written:

S(,.,, Sy, ( 1 *)/h
Se, S‘( 0.

e *

(A1.9)

Tt is not essential to our approach that the “reference
temperature method” be used at this juncture. One may
view it as one of several possible methods for motivating an
appropriate form for the equivalent blowing parameter
appearing in equations (3.1) and (3.13).

¥t can be easily shown through an order of magnitude
analysis of the terms in the energy and species equations
that ¢ varies from only 1/3 to 1/2 in the range 0 < Le < .
More exact estimates [13] are also available for various
specific low conditions. For the results presented below ¢
was taken to be 0.4.

SFor air in the temperature range 588 < T < 1588 K and
at pressures in the ideal-gas law range (cf. equation (A1.12))
we may take [19] x; = 0.19, @ =~ 0.65, &, ~ 0.85, n x 1.652
so that f§, = 0002 and f, = —0.008. Smallness of 2,
eliminates the need to distinguish between temperature ratio
and enthalpy ratio in the low speed boundary layer
situations discussed here.
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i‘:: = Il‘(j = (0", (AL.10)

where
fir=n—1-wo (AL
fr=a+n—1—¢,. (AL12)

Equations (A1.6)-(A1.12) suggest that the “Peclet shift” can

be written as:
, 5()17‘)/x.|1 ——Z:)* I
e, ’

(A1.13)

A(Pe,) = CZJ.,,[(L&,)“

where C, ., is a multiplying factor determined later. In
terms of these same quantities the variable property suction
term can be expressed
f,—0
ot
( ) Y

(lo) {8 oD _
D/, lep & f, N

(AL14)
Substituting equations (A1.13) and (A1.14) into equation

(A1.1), we finally obtain equation (3.2).

Coefficients relating the factors C, ., C, . and C,
Equations (3.5)-(3.8), when combined with the explicit
estimates above, lead to equations (3.9). (3.10), where

A = 1—0% {AL1.15)
- 1)(1/0,,— I)(L N
AzEf” )( — )( e)( ) - {Al]ﬁ)
"+(1 ()“—])(Le )( )”’
Ay = (Le) "0 * e (A1.17)
A 2
L= 1-2’» (Le)¥ "H(B)9 "V —1)  (AL18)
1= (n—l) /() —-])(Le)(())
T 241/, — iLe, (0,
A, .
— =S (Le T H@) T V=1 (ALL19)
As '
0, = 0,+51-0,)(Le,) (A1.20)
0= O, = 120, +3(1-0,). (A1.21)
For a given wall temperature ratio, 8,, and Lewis

number, Le,, these interrelations essentially complete one
form of the proposed variable property correlation scheme
except for the as yet undetermined “correlating factor™.
C,..» multiplying the effective blowing parameter.

APPENDIX 2. NUMERICAL SOLUTION PROCEDURE

The system of differential equations governing the
compressible, laminar boundary layer problem outlined in
Section 2 was solved by first casting the equations into their
“incompressible” form wvia the well-known Howarth
Dorodnitsyn—Lees transformations:

Pttt dX

WO

u, r ,
S ] pdy’.
Jo

23102
&

n=

!

We then seek “similar” solutions for the non-dimensional
momentum, energy and concentration dependent variables:
fin) = Q207200 = h/h . Y = Y/ Y,

Upon eliminating the need for the overall mass con-
servation equation by introducing the stream function W,
the resulting coupled system of ordinaryt differential

+Primed quantities denote differentiation with respect to
the similarity variable n defined above.
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Table A2.1. Numerically computed wall eigenvalues for the plane stagnation point flow {f = 1) of various
mixtures

Momentum and energy eigenvalues

4.0

0, 04 06 08 10 20 30
1701 1.0051 1.1031 1.1755 1.2333 1.4226 1.5408 16283
@(0) 0.2349 0.1746 0.0940 0 —0.5857 — 12818 —2.0447
Species eigenvaluest
e — e
Species\”“\ o4, 06 08 10 20 30 40
— . —————— — —_— —
NSO 0.5803 0.6543 0.6929 0.7139
A2 0.5682 0.6306 0.6769 0.7139 B -
NaCl 035148 05717 06081 06335
0.5017 0.5580 0.5999 06335 B - e
NaOH 04760 05287 05651 05929 T
0.4685 0.5217 0.5611 0.5929 B o
Na 04340 04736  oshi4 05422 T T T
: 0.4267 0.4759 05127 0.5422
NbCl T T T O moT T G283 T 67040 T 06763
s 0.7107 0.8308 0.9052 0.9599
MoCl T T T T T o356 07484 T 07178 06849
: 0.7356 0.8591 09356 09918
Wl T T T TToA390 07490 07148 06791
s 0.7390 0.8631 09398 09963
Hel T T o480 T 07558 T 09177 06789
gl 0.7480 08733 09508 10078
o, - T 08022 08203 0769 07112
o 0.8022 0.9348 1.0169 10773

+ The two eigenvalues indicated for each species correspond to x # 0 and x = 0 respectively (i.e, with and

without thermal diffusion).

equations can be written:

Momentum

g

4
£+ { 6" f—ny ‘}f” = B[S P—6]  (A2D)

0
Energy
& —n, (—qo)—z + Pr,0mf8' =0 (A2.2)
Species 1
YY' +YY+ DY, =0, (A2.3)
where:
Y = S { f+ L} —n, v (A2.3a)
7 Sc omt! 4
712
= l4a;—g
ny=2-n (A2.4)
ny=1—w
2m

= —— (foru, ~ x™").
m+1

These equations were solved subject to the following simple
boundary conditions:

f(0)=0; ._/"(0)=0; fic)=1 (A25)
0(0) = 6., (specified constant); 6(o0) = 1
Y,(0)=0; Y,(x)=1. (A2.6)

Numerical solution of the system of equations
(A2.1)-(A2.6) is simplified considerably by the fact that
while the momentum and energy fields are strongly coupled
they can be solved independently of the normalized trace
species mass fraction Y,. Thus, for each 8, -value of interest
solutions to the coupled, nonlinear system of momentum
and energy equations (i.e., equations (A2.1), (A2.2) and
(A2.5)) were first found by one computer code and stored.
The method of “quasilinearization” [23] was used for the
numerical solutions reported here. These solutions were
then used as input to another computer code which

HM.T. 22/9—0n

employed a modified Hamming predictor-corrector method
to solve the linear boundary value problem for the trace
species concentration Y;. The numerical solutions obtained
for the coupled momentum and energy equations compared
well (correct to 4 decimal places) with those of [24]. Our
computation time for each solution was about 18s (on the
Yale Computer Center IBM 370/158), for a given 8,-value.
Table A2.1 gives the numerically computed wall eigen-
values for various trace species—air mixtures near a plane
stagnation point, for a range of 0,, values.

APPENDIX 3. FORM OF THE THERMAL
DIFFUSION PSEUDO-BLOWING PARAMETER
AND PSEUDO-SOURCE CORRECTION

Effective blowing parameter associated with thermal (Soret)
diffusion

Following the reasoning of Appendix 1, we write the
effective “blowing” parameter in the form of a difference in
Peclet numbers:

o i
Bc”- = UefOpm . (Eeif m (ASI)
' D d+vep D vp.

(A3.2)
(E’eff)rp = El'p_(ﬁs)lvp' (A3.3)

Since equation (2.11a) suggests that (i,),44,, = (0,),, +(5,)
one obtains from equation (A3.1), after cancelling terms,
the following expression:

with

(5err)rd+up = El‘p_ (f’s)mwp

030y
Beyw=— (T) .
7

The effect of thermal diffusion is included in (7,), the
averaged suction velocity due to thermal diffusion alone.

Moreover, from equation (2.11a), the suction velocity due
to thermal diffusion is given by

(A34)

oInT
(U5)a = Do ——. (A3.5)
It therefore follows that:
) 0,0,
(L,Lﬂ) ~ a*<_*‘f). (A3.6)
D Jyg 0,
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Using the above relation (equation (A3.6)) one may now
express the effective blowing parameter associated with
thermal diffusion, B, , in terms of the pertinent variables
in the form of equation (3.13).

Effective  Damkohler
homogeneous reaction

As discussed in Sections 2 and 3 we anticipate that the
pseudo-source effects of thermal (Soret) diffusion can be
correlated in terms of a Damkohler group, f33,,. interpret-
able as the square root of the ratio of a characteristic
diffusion time to a characteristic pseudo-chemical reaction
time. To implement this idea so that quantitative estimates
of the pseudo-source (“reaction” factor) effect, F, (equations
(3.22) and (3.23)) can be obtained, it is necessary to relate
fd,, to the known parameters of our problem. For this
purpose the following estimation procedure was tentatively
adopted.

Consider first the average value of the pseudo homo-
geneous rate constant K {over the specics boundary layer
thickness). From equation (2.12) we have:

1
K= . /)D
p ey

number  associated  with  pseudo-

Alng 1 ¢ ‘o
o e =~ 1*% pD - - (A3

‘y p Cy cy

Expanding the right hand side of cquation (A3.7) using the
fact that pD ~ T"~', one obtains:

i [0 -2 o0
R =2.D,0, o (() . (A38)

(‘v\.l U* YAy

R. SrivasTava and D. E. ROsNER

Remembering that the species layer thickness. J,, 1s
different from the thermal layer thickness, &,, the de-
rivatives appearing in the above equation may be approxi-
mated as:

& N | (’f"(’ ) N ( a0 A39)
o 2 \er ey ) A
o /ooy &0
- AN A3.10
cy 2 [( f‘,\',),,, <(‘Ll‘ ) \\] ( )
with
SEN 06y
/(12() R - ( (‘1‘14,,)0 <0}4)m A311 )
(f‘_\v"' )m - 15, ~(5m (A3
o0y o0
R <(w‘) - p}) i
) s A A3.12)
Moreover,

<ﬁf) o (0(;) _(1=0,) (n()) 0,0,
(.;.v,)l‘ a ' p" m = (57 ‘(Sm ’ ﬁv W - (sm ‘

Combining these estimates, the relevant pseudo-Damkohler
number can be written as equation (3.24), which was used
in the correlations reported in Section 4 and Fig. 5.

UNE APPROCHE NOUVELLE DU TRANSFERT MASSIQUE EN COUCHE LIMITE AVEC
DIFFUSION THERMIQUE ET PROPRIETES VARIABLES

Resume - On degage une approche rationnelle de 'expression du transport massique de couche limite,
applicable a de nombreuses conditions d’écoulement laminaire fréequemment rencontrées, avec diffusion
thermique et propriétés variables. Le schéma est construit sur les solutions de soufflage/succion avec
propriétés constantes, en introduisant des facteurs correctifs appropriés pour tenir compte des effets
aditionnels (“pseudo soufflage et source), identifiés avec les propriétés variables et la diffusion thermique.
Des applications au probleme particulier de transfert massique en couche limite laminaire montrent une
précision satisfaisante jusqu’a des facteurs de soufflage de I'ordre du tiers du seuil critique. En application
de la corrélation avec propriétés variables, Panalogie des transferts de chaleur et de masse est ¢largie,
pour un grand domaine du nombre de Lewis, en incluant les effets des propriétés variables.

EIN NEUES VERFAHREN ZUR BERECHNUNG DES STOFFUBERGANGS IN DER
GRENZSCHICHT BEI THERMODIFFUSION UND/ODER VARIABLEN STOFFWERTEN

Zusammenfassung - Es wird cin rationelles Verfahren fiir die Berechnung des Stoffiibergangs in der
Grenzschicht entworfen, das auf viele allgemein anzutreffende laminare Stromungsbedingungen mit
Thermodiffusion und/oder variablen Stoffwerten angewandt werden kann. Das Berechnungsverfahren
baut auf bereits bestehenden Verfahren fur konstante Stoffwerte bei Ausblasen bzw. Absaugung auf.
Dabet werden geeignete Korrekturfaktoren eingefiihrt, die die zusétzlichen Einfliisse ("pseudo” Ausblasen
und Quelle) berticksichtigen, die bei variablen Stoffwerten und Thermodiffusion auftreten. Die
Anwendungen des Schemas auf die hier betrachteten besonderen Stoffibergangsprobleme bei laminarer

Grenzschicht  (Alkali-

und  Ubergangs-Metallgemisch-Damplftransport)

zeigen zusriedenstellende

Genauigkeit bis zu effektiven Ausblasfaktoren, die etwa einem Drittel des “Abblaswertes” entsprechen.

Als niitzliches Nebenergebnis des Verfahrens bei variablen ZustandsgréBen erweitern wir die Wirme-

und Stoffibergangsanalogie fiir einen groflen Bereich der Lewis—Zahl, um die Einfliisse der variablen
Stoffwerte mitzuerfassen.

HOBBIN [MOAXO0A K KOPPEJISHIIMA CKOPOCTEN NMEPEHOCA MACCHI
B NMOIr'PAHHUYHOM CJIOE 1MPH HAJIMUHUH ]‘EPMI’I‘{ECKOVI ANOPY3INH U
NMEPEMEHHBIX CBOUCTBAX

Annotauns — [lpennoxeH npakTHYECKHA NMOOXOH K YCTAHOB/IEHHIO KPHTEPHANbHLIX 3aBHCHMOCTEH

npouecca nepeHoca MacCbl B TOrpaHHYHOM  CJ10€,

KOTOpHﬁ MOXHQ HCNOJb30BATH BO MHOIHX

0OBIYHO BCTPEYAFOLLMXCS CJIyHaAX JaMHHAPHOTO TEYECHHSA NMPH HATHYHMH TEPMHYCCKOHR AHDPY3un u/win
NEPEMEHHBIX CBOHCTB XHIAKOCTH. [IpMHLHN 1MOCTPOEHHs 3aBHCHMOCTEH Oa3HpyeTcs Ha MMEHOLUUXCS
pelieHusX IS BAYBa/OTCOCA XHAKOCTH C MOCTOSHHBLIMH CBOMCTBAMH, B KOTOpPbIE BKJIIOYEHBI COOT-
BETCTBYIOLUME MONPABOYHbIe KOYDGHUMEHTbI A y4e€Ta BJIMAHHS NEPEMEHHbIX CBOWHCTB XHIKOCTH H
TepMuyeckoit 1ubdy3nu («ICeBAOBAYB» M MCTOYHMK Temja). [IpeanoxeHHBIH NoAXod B MPWIOKEHHH
M onpele/icHHbIM, pacCMaTPHBAaEMbIM B HacToALleH paboTe, 3a1a4aM nepeHOCa Macchl B JAMHHAPHbBIX
[OrPAHHYHBIX CJ10%X (MEPEHOC NapoB COSHHEHHI ILEJO4YHBIX H NEPEXOAHBIX METAJLIOB) JaeT Xopouiee
COBNAJEHHE PE3Y/NbTATOB BIUIOTH [0 3Ha4eHWi 3DGeKTHBHBIX KOIpPHUMEHTOB BAyBa, paBHbIx 1/3.
Kpome Toro, npeanaraeMslii noaxoa no3poJsieT o606LHTE aHaJIOTHIO TENJIOMAcCONepeHoca B LUMPO-
KOM IMana3oHe 3HaueHui yucia JIbionca Ha cayyail nepeMeHHbIX CBOHCTB KUIKOCTH.



